APPLIED THERMODYNAMICS

Course Code	19ME3402	Year	II	Semester	II	
Course Category	Program Core	Branch	ME	Course Type	Theory	
Credits	3	L – T – P 2– 1 – 0 Prerequi		Prerequisites	Engineering Thermodynamics	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes				
After	successful completion of the course, the student will be able to	'		
CO1	Learn the terminology, basic concepts and working principles of IC engines.	L1		
CO2	Understand the various stages of combustion process in SI and CI engines.	L2		
CO3	Analyze thermodynamic analysis of Rankine cycle.	L3		
	Assess thermodynamic analysis of gas power cycles.	L4		
CO5	Evaluate the COP of refrigeration systems and understand various Psychometric processes.	L3		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1											3	
CO2	3	2											2	
CO3	3	2		2		2	2						3	2
CO4	3	1		2		2	2						3	2
CO5	3	1		2		2	2						2	

Syllabus					
UNIT No.	Contents	Mapped COs			
I	IC Engines: Working and classification of IC engines, comparison of two stroke and four stroke engines, comparison of SI and CI Engines. Testing and Performance of IC Engines: Methods of testing IC	CO1			
	Engines, performance analysis of IC Engines.				
II	Combustion in IC Engines: SI Engine: stages of combustion, normal combustion, abnormal combustion, variables affecting delay period and knocking, pre-ignition. Stages of Combustion in CI Engine: normal combustion, abnormal combustion, variables affecting delay period and knocking. Fuel requirements and fuel rating of SI and CI engines.	CO2			
Ш	Vapour Power Cycles: Vapour power cycle, simple Rankine cycle, mean temp of heat addition thermodynamic variables affecting efficiency and output of Rankine cycle. Methods to Improve Thermal Efficiency of Rankine Cycle: Reheating, Regeneration, Factors affecting Rankine cycle, Adiabatic flame temperature.	CO3			

Department of Mechanical Engineering

PVP 19

	Gas Power Cycle: Brayton cycle, Simple gas turbine plant, closed	GG 4
IV	cycle and open cycle for gas turbines, condition for maximum pressure ratio and optimum pressure ratio, actual cycle.	CO4
	maximum pressure ratio and optimum pressure ratio, actual cycle.	
V 7	Refrigeration: Bell-Coleman cycle-vapour compression cycle, effect of vapour condition on COP of VCR, vapour absorption cycle, properties of common refrigerants.	
V		000
	Principles of Psychrometry and Air-Conditioning: Psychometric	
	terms, Psychometric processes and air conditioning systems.	

Learning Recourse(s)

Text Book(s)

- 1. Ganesan V/ Internal Combustion Engines / Tata McGraw Hill,2017.
- 2. CP Arora / Refrigeration and Air Conditioning / TMH.
- 3. V.P.Vasandani and D.S.Kumar / Treatise on Heat Engineering / Metropolitan book Co. Pvt. Ltd.

Reference Book(s)

- 1. Mahesh M Rathore, Thermal Engineering, McGraw Hill Publications 2012.
- 2. CengalY.A and Boles M.A, Thermodynamics: An Engineering Approach, 5/e, McGraw-Hill, 2006.
- 3. Yahya, S.M., Turbines, Compressors and Fans, 4/e, TataMcGrawHill, 201 0.
- 4. Nag P.K, Engineering Thermodynamics, 4/e, Tata McGraw-Hill,2008.
- 5. Onkar Singh, Thermal Turbomachines, 3/e, Wiley India, 2014.
- 6. P.L.Ballaney, Thermal Engineering, 2/e, Khanna, 2005.